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ABSTRACT: A group G has finite Prüfer rank r=r(G) if every finitly generated subgroup of G can be 
generated by at most r elements, and r is the least positive integer with this properly. In this paper we show 
that if the locally soluble group G=AB with finite Prüfer rank is the product of two subgroups A and B, then the 
Prüfer rank of G is bounded by a function of the Prüfer ranks of A and B. 
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INTRODUCTION 
 
 In 1968 N.F. Sesekin (see [19]) proved that a product of two abelian subgroups with minimal condition satisfies 
also the minimal condition . He and Amberg independently obtained a similar result for the maximal condition 
around 1972. Moreover, a little later the proved that a soluble product of two  nilpotent subgroups with maximal 
condition likewise satisfies the maximal condition, and its Fitting subgroups inherits the factorization. Subsequently 
in his Habilitationsschrift (1973) he started a more systematic investigation of the following general question. Given 

a (soluble) product G of two subgroups A and B satisfying a certain finiteness condition x , when does G have the 

same finiteness condition x ?(see 20) 
 For almost all finiteness conditions this question has meanwhile been solved. Roughly speaking, the answer is 
'yes' for soluble (and even for soluble-by-finite) groups. This combines theorems of B. Amberg (see [1], [2],[3],[4] 
and [6]) , N.S. Chernikov (see [5]), S. Franciosi, F. de Giovanni (see [3],[6]), O.H.Kegel (see [8]), J.C.Lennox (see 
[12]) , D.J.S. Robinson(see [9] and [12]), J.E. Roseblade(see [13]), Y.P.Sysak(see [19] and[20]), J.S. Wilson(see 
[23]), and D.I.Zaitsev(see [11] and [18]). 
 Now, in this paper, we study the finite Prüfer rank of locally soluble group G and its relations, and the end we 
prove that if the locally soluble group G=AB with finite Prüfer rank is the product of two subgroups A and B, then 
the Prüfer rank of G is bounded by a function of the Prüfer ranks of A and B. 
2. Priliminaries : ( elementary properties and theorems.) 
 

2.1. Lemma: Let the finite group G=AB be the product of two subgroups A and B. If A,B, and G are group,-D  for a 
set   of primes, then there exist Hall  -subgroups A0 of A and B0 of B such that A0B0 is a Hall                          -
subgroups of G.  

Proof: Let A1, B1, and G1 be Hall  -subgroups of A, B, and G, respectively. Since G is a group,-D there exist 

elements x and y such that 
y
1

x
1 B and A  are both contained in G1. It follows from Lemma 2.4 that 

zx A A 
 and  

zy B B 
for some z in G. Thus 

-1xz
10 A A 

and 

-1yz
10 B B 

 are Hall  -subgroups of A and B, respectively, which are 

both contained in 

-1yz
10 G G 

. Clearly the order of 00 BA   is bounded by the maximum  -divisor n of the order of 

BA  since 
,

|B  A|

|B| . |A|
|G|




It follows that 
.|BA|

|B  A|

|B| . |A|

n

|B| . |A|
|G| 00

00

0000
0 

  Therefore A0B0=G0 is a Hall  -
subgroup of G. 
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2.2.Corollary: Let the finite group G=AB be the product of two subgroups A and B .Then for each prime p there 
exist Sylow p-subgroups A0 of A and B0 of B such that A0B0 is a Sylow p-subgroup of G.  
Proof: See [5].  

2.3.Lemma: (See [13]) If N is a maximal abelian normal dubgroup of a finite p-group G, then 
1).r(N) (5 r(N)

2

1
r(G) 

 

Proof :  Since N,N)(CG  the factor group G/N is isomorphic with a p-group of automorphism of N. Thus G/N has 

perufer rank at most 
1)-r(N)(5r(N)

2

1

(See [15], part 2,lemma 7.44), and hence 
. 1)r(N)(5r(N)

2

1
r(G) 

 
 

2.4.Lemma : Clearly subgroups and homomorphic images of groups with finite Prüfer rank also have finite Prüfer 
rank. 
 

Proof : See [5]. 
2.5. Main Theorem: If the locally soluble group G=AB with finite Prüfer rank is the product of two subgroups A and 
B, then the Prüfer rank of G is bounded by a function of the Prüfer ranks of A and B.  
 

Proof : First, let G be a finite p-group for some prime p. If N is a maximal abelian normal subgroup of G, by Lemma 

2.3  we have 
1).r(N)(5r(N)r(G)

2
1 

 Hence it is enough to prove that r=r(N) is bounded by a function of the 

maximum s of r(A) and r(B). The socle S of N is an elementary abelian group of order p . Clearly it is sufficient to 
prove the theorem for the factorizer X(S) of S. Therefore we may suppose that the group G has a triple factorization 

G=AB=AK=BK, where K is an elementary abelian normal subgroup of G of order p .  

 Let e be the least positive integer such that 
epA is contained in B. By Lemma 4.3.3 of [4], we have 

2e s-eg(s)p p|A:A|  |BA:A|   Where 
 1).s(3s g(s)

2
1   Since 

,
|KB|

|K| . B

|BA|

|B| . A
|G|




 

It follows that 
.p pp  |KB| . |BA:A|K ss-eg(s)ss-eg(s) 22  
Hence 

eg(s).ss-eg(s)r 2 
Therefore it is 

enough to show that 3.g(s)e   Therefore it is enough to show that . 3g(s)e   

 Clearly we may suppose that e>1. Let a be an element of A such that 
1-epa is not in B, and write 

1-epa =xb, with 

x in K and b in B. Then 1,]a[x,
2-ep  because otherwise 

,aax)ax(b
1-e1-e2-e ppp-pp1-p   

contrary to the choice of a. As K has exponent p, it follows from the usual commutator laws that .  

2a]..p [x,a] [x,]a[x, e)(p

i

p

1i

p
2-ie2-e

2-e


  

Thus 
1,]G G,...,[K,

2-ep




and so |K|>

2-epp since G is a finite p-group. Therefore 
 eg(s).rp 2-p 
If 4g(s)e  , then 

eg(s).1)g(s)(e4)-1)(e(e2p 2-e2-e 
 

This contradiction shows that 3.g(s)e   
 Suppose now that G=AB is an arbitrary finite soluble group. For each prime p, by Corollary 2.2 there exist 
Sylow p-subgroups Ap of A and Bp of B such that Gp=ApBp is a Sylow p-subgroup of G. As was shown above, r(Gp) 
is bounded by a function f(s) of the maximum s of r(A) and r(B), and this does not depend on p. Thus every 
subgroup of prime-power order of G can be generated by a function f(s) of the maximum s of r(A) and r(B), and this 
does not depend on p. Thus every subgroup of prime-power order of G can be generated by at most f(s) elements. 
Application of Theorem 4.2.1 of [4] yields that every subgroup of G  can be generated by at most f(s)+1 elements, 
and hence the Prüfer rank of G is bounded by f(s)+1. This proves the theorem is the finite case.  
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 Let G=AB be an arbitrary locally soluble group with finite Prüfer rank. If N is a finite normal subgroup of G, and 

X=X(N) is its factorizer, then the index  |BA:X|  1.1.5. Lemmaby  finite is  of core the be Y Let X in BA .
Since the factorized group X/Y is finite, it follows from the first part of the proof that thePrüfer rank of X/Y is 

bounded by a function of the Prüfer ranks of A and B. As r(X/Y)r(A)r(X/Y)r(Y)r(X)r(N)  (e.g.see 

Robinson 1972, Part 1,Lemma 1.44) we obtain that there exists a function h such that k,r(B)) h(r(A),r(N)   for 
every finite normal subgroup N of G. Clearly the same holds for every finite normal section of G.  

 Let T be the maximum periodic normal subgroup of G. If p is a prime, the group 
(T)T/OT p

 is Chernikov by 

Lemma 3.2.5 of [4] (See also [16]). Let J be the finite residual of T , and S  the socle of J . Since S and  J/T  are 

finite, it follows that 
2k.)J/Tr()Sr()J/Tr()Jr()Tr( 

 

 As the Sylow p-subgroups of T can be embedded in T , they have Prüfer rank at most 2k. Application of 
Theorem 4.2.1 of [4] (See also [14]).  yields that every finite subgroup of T can be generated by atmost 2k+1 

elements. Hence r(T) 1.2k   

 The group G/T is soluble (Robinson 1972, Part 2, Lemma 10.39), and so the setoff primes (G/T)  is finite by 
Lemma 4.1.5 of [5](See also [15]). It follows from Lemma 4.1.4 of [4] (See also [15]) that there exists in G a normal 

series of finite length G,GGT 21   where G1/T is torsion-free nilpotent, G2/G1 is torsion-free abelian, and G/G2 
is finite. Therefore 

1.3k(G)r        

)r(G/G(G)rr(T)        

)r(G/G)G/r(GT)/r(Gr(T)r(G)

0

20

2121







 

 By theorem 4.1.8  of [4] (See also [3] ) we have that (B).r(A)r(G)r 000   

 Moreover, 4.3.4 Lemmaby  r(B)(B)r and r(A)(A)r 00   of [4] (See also [9]). Therefore 

1.3kr(B)r(A)r(G)   The theorem is proved.  
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